Satisfaction

Local Pathologies

Separable Cuts

Non-local Pathologies

Arithmetic Saturation and Pathological Satisfaction

Athar Abdul-Quader (joint work with M. Łełyk)

Purchase College, SUNY

Online Logic Seminar March 23, 2023 Ramadan Mubarak! Satisfaction

000000

Recursive Saturation / Resplendency

Fix a finite language \mathcal{L} . Recall the following definitions (Barwise-Schlipf, 1976):

- A first order structure \mathfrak{A} is recursively saturated if, whenever p(x) is a computable, consistent type (possibly including finitely many parameters from \mathfrak{A}), there is $c \in \mathfrak{A}$ realizing p(x).
- A first order structure 𝔅 is resplendent if, whenever R ∉ ℒ is a new relation symbol, ā ∈ 𝔅 is a tuple and φ(ȳ) ∈ ℒ ∪ {R} is a formula, if Th(𝔅, ā) ∪ {φ(ā)} is consistent, then 𝔅 has an expansion (𝔅, R) ⊨ φ(ā).

Theorem (Barwise-Schlipf)

A countable structure is recursively saturated if and only if it is resplendent.

Smorynski (1981) improved this to "chronic resplendency."

Satisfaction classes

Theorem

Let $\mathcal{M} \models \mathsf{PA}$ be countable. Then \mathcal{M} has a full satisfaction class $S \subseteq M^2$ if and only if \mathcal{M} is recursively saturated.

- Satisfaction class: for each formula ϕ , assignment α , if $\mathcal{M} \models \phi[\alpha]$, then $(\phi, \alpha) \in S$. (Identify formulas with codes)
- Satisfies Tarski's compositional axioms for satisfaction.
- Full: for each $\phi \in \text{Form}^{\mathcal{M}}$, α , either $(\phi, \alpha) \in S$ or $(\neg \phi, \alpha) \in S$.
- ⇐ : Kotlarski, Krajewski, Lachlan (1981)
- \implies : Lachlan (1981).
- Enayat, Visser (2015): perspicuous model-theoretic proof (of KKL).

(After this: assume all models of PA in this talk are countable and recursively saturated.)

Satisfaction ○○●○○○○	Idempotent Disjunctions	Local Pathologies	Separable Cuts	Non-local Pathologies

Induction

Definition

Let $\mathcal{M} \models \mathsf{PA}$. $X \subseteq \mathcal{M}$ is inductive if the expansion $(\mathcal{M}, X) \models \mathsf{PA}^*$: that is, if the expansion satisfies induction in the language $\mathcal{L}_{\mathsf{PA}} \cup \{X\}$.

- Blur lines: truth predicates / satisfaction classes
- CT⁻ (theory of a full, compositional truth predicate) is conservative over PA: if φ ∈ L_{PA}, CT⁻ ⊢ φ if and only if PA ⊢ φ.
- CT is the theory $CT^- + "T$ is inductive"
- CT is not conservative over PA: $CT \vdash Con(PA)$
- CT₀: CT⁻ + "T is Δ_0 -inductive" also proves Con(PA).

Separable Cuts

Non-local Pathologies

Disjunctive Correctness

Definition

Let $c \in M$, $\langle \phi_i : i \leq c \rangle$ be a (coded) sequence of sentences in \mathcal{M} . Then we define $\bigvee_{i \leq c} \phi_i$ inductively: • $\bigvee_{i \leq 0} \phi_i = \phi_0$, and • $\bigvee_{i \leq n+1} \phi_i = \bigvee_{i \leq n} \phi_i \lor \phi_{n+1}$.

DC is the principle of disjunctive correctness:

$$\forall c \forall \langle \phi_i : i \leq c \rangle T(\bigvee_{i \leq c} \phi_i) \leftrightarrow \exists i \leq c T(\phi_i).$$

Separable Cuts

Non-local Pathologies

Disjunctive Correctness

Definition

Let $c \in M$, $\langle \phi_i : i \leq c \rangle$ be a (coded) sequence of sentences in \mathcal{M} . Then we define $\bigvee_{i \leq c} \phi_i$ inductively: • $\bigvee_{i \leq 0} \phi_i = \phi_0$, and • $\bigvee_{i \leq n+1} \phi_i = \bigvee_{i \leq n} \phi_i \lor \phi_{n+1}$.

DC is the principle of disjunctive correctness:

$$\forall c \forall \langle \phi_i : i \leq c \rangle T(\bigvee_{i \leq c} \phi_i) \leftrightarrow \exists i \leq c T(\phi_i).$$

Theorem (Enayat-Pakhomov)

 $CT^- + DC = CT_0.$

Satisfaction ○○○○●○○	Idempotent Disjunctions	Local Pathologies	Separable Cuts	Non-local Pathologies
DC-out	vs DC-in			

• DC-out:
$$T(\bigvee_{i \leq c} \phi_i) \to \exists i \leq cT(\phi_i).$$

• DC-in:
$$\exists i \leq cT(\phi_i) \rightarrow T(\bigvee_{i \leq c} \phi_i).$$

Theorem (Cieśliński, Łełyk, Wcisło)

- $CT^- + DC$ -out is not conservative over PA. (in fact, it is equivalent to CT_0).
- CT⁻ + DC-in is conservative over PA.

Satisfaction ○○○○○●○	Idempotent Disjunctions	Local Pathologies	Separable Cuts	Non-local Pathologies

Disjunctive Triviality

Idea (for conservativity of DC-in): every $\mathcal{M} \models PA$ countable has an elementary extension \mathcal{N} with an expansion to CT^- that is disjunctively trivial.

Disjunctive Triviality

Idea (for conservativity of DC-in): every $\mathcal{M} \models PA$ countable has an elementary extension \mathcal{N} with an expansion to CT^- that is disjunctively trivial.

That is, $(\mathcal{N}, T) \models \mathsf{CT}^-$ and, for each $c > \omega$, $\langle \phi_i : i \leq c \rangle$, $T(\bigvee_{i \leq c} \phi_i)$. Hence, $(\mathcal{N}, T) \models \mathsf{DC}\text{-in}$.

Disjunctive Triviality

Idea (for conservativity of DC-in): every $\mathcal{M} \models PA$ countable has an elementary extension \mathcal{N} with an expansion to CT^- that is disjunctively trivial.

That is,
$$(\mathcal{N}, T) \models \mathsf{CT}^-$$
 and, for each $c > \omega$, $\langle \phi_i : i \leq c \rangle$, $T(\bigvee_{i \leq c} \phi_i)$. Hence, $(\mathcal{N}, T) \models \mathsf{DC}$ -in.

Question

Does every countable, recursively saturated model of PA have a disjunctively trivial expansion?

Intuitively: seems like it should follow from the existence of disjunctively trivial elementary extensions using resplendence?

Satisfaction 000000●	Idempotent Disjunctions	Local Pathologies	Separable Cuts	Non-local Pathologies
Slogan				

- Preventing pathologies requires (some) induction.
- Conservative truth theories necessarily carry pathologies.

Separable Cuts

Non-local Pathologies

Idempotent disjunctions

Instead of considering all disjunctions, we will study idempotent disjunctions (disjunctions of a single sentence θ).

Question

Let $\mathcal{M} \models \mathsf{PA}$ (countable, recursively saturated). Fix a false (standard) sentence θ (ex: 0 = 1). For which sets X must there be a satisfaction class S such that $X = \{c : (\bigvee_{i \le c} \theta, \emptyset) \in S\}$?

Clearly:

• X is closed under successors, predecessors.

• $0 \notin X$, therefore $\omega \cap X = \emptyset$.

What else?

Satisfaction	Idempotent Disjunctions	Local Pathologies	Separable Cuts	Non-local Pathologies
Separa	bility			

Recall that models of PA have the ability to code (M-)finite sets and sequences. For $M \models$ PA, $a, b \in M$:

- (a)_b denotes the b-th element of the (*M*-finite) sequence coded by a.
- $\mathcal{M} \models a \in b$ if a is in the (\mathcal{M} -finite) set coded by b.

Definition

Let $A \subseteq D \subseteq M$. A is separable from D if for each $a \in M$ such that $\{(a)_n : n \in \omega\} \subseteq D$, there is $c \in M$ such that for each $n \in \omega$, $(a)_n \in A$ if and only if $n \in c$. We say a set $X \subseteq M$ is separable if it is separable from M.

It turns out, this is all we need!

Separable Cuts

Non-local Pathologies

Separability Results

We will see:

- If X ⊆ M is separable, disjoint from ω, and is closed under successors and predecessors, then M has a full satisfaction class such that X is the set of lengths of true disjunctions of 0 = 1; and,
- If D is any set of sentences and A = {φ ∈ D : (φ, ∅) ∈ S}, then A is separable from D.

Both of these are, essentially, due to unpublished work by Jim Schmerl (Sent to A. Enayat in private communication, 2012).

Satisfaction	Idempotent Disjunctions	Local Pathologies	Separable Cuts	Non-local Pathologies
Evercise	`			

Proposition

Suppose
$$D = \{\bigvee_{i \le c} (0 = 1) : c \in M\}$$
 and $A = \{\bigvee_{i \le c} (0 = 1) : c \in X\}$
for some set X. Then A is separable from D if and only if X is
separable (from M).

 \implies : Immediate from the definitions.

 $\stackrel{\quad \leftarrow}{\longleftarrow} : \text{Let } a \in M \text{ be such that for each } n \in \omega, \ (a)_n \text{ is a disjunction} \\ \text{of } (0 = 1). \text{ Let } b \in M \text{ be such that for each } n \in \omega, \\ (a)_n = \bigvee_{i \leq (b)_n} (0 = 1) \text{ (use saturation of } \mathcal{M} \text{ to find } b). \text{ Then since} \\ X \text{ is separable, there is } c \text{ such that } (b)_n \in X \text{ if and only if } n \in c. \\ \text{This } c \text{ shows } A \text{ is separable from } D. \\ \end{cases}$

Separable Cuts

Non-local Pathologies

Arithmetic Saturation

Definition

 \mathcal{M} is arithmetically saturated if whenever $a, b \in M$ and p(x, b) is a consistent type that is arithmetic in tp(a) is realized in \mathcal{M} .

Folklore: \mathcal{M} is arithmetically saturated if it is recursively saturated and ω is a strong cut: that is, for each *a* there is $c > \omega$ such that for each $n \in \omega$, $(a)_n \in \omega$ if and only if $(a)_n < c$. Exercise: ω is a strong cut iff it is separable.

Corollary

Let \mathcal{M} be countable and recursively saturated. Then \mathcal{M} is arithmetically saturated if and only if it has a disjunctively trivial expansion to CT^{-} .

Nonstandard sentences

What's special about disjunctions? Nothing. Fix θ . We consider the following examples of nonstandard iterates of θ .

•
$$\bigvee_{i \leq c} \theta := (\bigvee_{i \leq c-1} \theta) \lor \theta$$

•
$$\bigwedge_{i \leq c} \theta := (\bigwedge_{i \leq c-1} \theta) \land \theta$$

•
$$\bigvee_{i \leq c} \theta := (\bigvee_{i \leq c-1} \theta) \lor (\bigvee_{i \leq c-1} \theta)$$

•
$$(\forall y)^c \theta := \forall y [(\forall y)^{c-1} \theta]$$

•
$$(\neg \neg)^c \theta := \neg \neg [(\neg \neg)^{c-1} \theta]$$

All of the above are formed by taking θ , the (c-1)-st iterate of θ , and combining them syntactically in a predetermined way. Both results generalize to all of these situations!

Satisfaction	Idempotent Disjunctions	Local Pathologies ○●○○○○	Separable Cuts	Non-local Pathologies
Genera	alization			

Fix θ an atomic sentence. Let $\Phi(p, q)$ be a finite propositional "template" (essentially a propositional formula with variables p, q, but we allow quantifiers over dummy variables) such that:

- q appears in $\Phi(p,q)$,
- if $\mathcal{M} \models \theta$, then $\Phi(\top, q)$ is equivalent to q, and
- if $\mathcal{M} \models \neg \theta$, then $\Phi(\bot, q)$ is equivalent to q.

Define $F : M \to \text{Sent}^{\mathcal{M}}$ by $F(0) = \theta$ and $F(x + 1) = \Phi(\theta, F(x))$. We say such an F is a local idempotent sentential operator for θ . Φ is called a *template* for F.

Satisfaction	Idempotent Disjunctions	Local Pathologies ○○●○○○	Separable Cuts	Non-local Pathologies

Examples

•
$$\Phi(p,q) = (\forall y)q$$
. Then $F(x) = (\forall y)^{x}\theta$.

Separable Cuts

Non-local Pathologies

Separability Theorem 1

Theorem

Fix θ and a local idempotent sentential operator F. Let $X \subseteq M$ be separable, closed under successors and predecessors, and for each $n \in \omega$, $n \in X$ if and only if $\mathcal{M} \models \theta$. Then \mathcal{M} has a full satisfaction class S such that $X = \{x : S(F(x), \emptyset)\}$.

Satisfaction	Idempotent Disjunctions	Local Pathologies ○○○○●○	Separable Cuts	Non-local Pathologies

Proof sketch

 For Y ⊆ Form^M, Cl(Y) is the smallest Z ⊇ Y closed under immediate subformulas.

• Y is finitely generated if Y = CI(Y') for some finite Y'.

Main part of construction: suppose Y is finitely generated and S is a full satisfaction class such that (\mathcal{M}, S) is recursively saturated and whenever $F(x) \in Y$, then $x \in X$ if and only if $S(F(x), \emptyset)$. Let $Y' \supseteq Y$ be finitely generated. Show that the following theory is consistent:

• S' is a full satisfaction class (Enayat-Visser lemma),

•
$$S \upharpoonright Y = S' \upharpoonright Y$$
,

•
$$\{S'(F(x), \alpha) : F(x) \in Y' \text{ and } x \in X\}.$$

Using the facts that Y, Y' are finitely generated and X is separable, the above can be expressed recursively. Apply resplendency.

Separable Cuts

Non-local Pathologies

Separability Theorem 2

Theorem

Let D be any set of sentences, S a full satisfaction class for \mathcal{M} , and $A = \{\phi \in D : S(\phi, \emptyset)\}$. Then A is separable from D.

Proof sketch: Stuart Smith's Theorem: \mathcal{M} is definably S-saturated. That is: if $\langle \phi_i(x) : i \in \omega \rangle$ is coded such that for each $m \in \omega$, there is an assignment α such that for all $i \leq m$, $S(\phi_i, \alpha)$, then there is α such that for all $i \in \omega$, $S(\phi_i, \alpha)$.

Let a be such that $(a)_n \in D$ for all $n \in \omega$, $\phi_i(x)$ the formula $(a)_i \leftrightarrow i \in x$. For each standard m, there is c such that for $i \leq m$, $(a)_i \in A$ if and only if $i \in c$. Apply Smith's result.

Separable Cuts ●○○○ Non-local Pathologies

Separable cuts

Proposition

Let $I \subseteq_{end} M$ be a cut. Then the following are equivalent:

- I is separable.
- 2 There is no a such that $I = \sup(\{(a)_n : n \in \omega\} \cap I) = \inf(\{(a)_n : n \in \omega\}).$
- For each a ∈ M, there is c such that for each n ∈ ω, (a)_n ∈ I if and only if (a)_n < c.

Proof is an exercise.

Separable Cuts

Non-local Pathologies

Existence

If (\mathcal{M}, I) is recursively saturated, then I is separable. (Exercise.)

Proposition

There are separable cuts which are closed under successor but not addition, addition but not multiplication, multiplication but not exponentiation, etc.

Proof (for + but not ×): Let $I \subseteq_{end} M$ be any cut which is closed under addition but not multiplication (ex: $c > \omega$, $I = \sup(\{n \cdot c : n \in \omega\}))$. Then by resplendence, there is $J \subseteq_{end} M$ such that (\mathcal{M}, J) is recursively saturated and J is closed under addition but not multiplication.

Superrational Cuts

R. Kossak (1989) introduced notions of "rational" / "superrational" cuts.

Definition (Kossak 1989)

Let $I \subseteq_{end} M$.

- I is coded by ω from below if there is a ∈ M such that
 I = sup({(a)_i : i ∈ ω}). I is coded by ω from above if there is
 a ∈ M such that I = inf({(a)_i : i ∈ ω}). I is ω-coded if it is
 either coded by ω from below or from above.
- I is 0-superrational if there is a ∈ M such that one of the following holds:
 - Def₀(a) ∩ I is cofinal in I and for all b ∈ M, Def₀(b) \ I is not coinitial in M \ I, or,
 - Def₀(a) \ I is coinitial in M \ I and for all b ∈ M, Def₀(b) ∩ I is not cofinal in I.

Satisfaction

Local Pathologies

Separable Cuts ○○○● Non-local Pathologies

Strength

Theorem

Let $I \subseteq_{end} M$. The following are equivalent:

- **1** is ω -coded and separable.
- **2** *I* is 0-superrational.

Proposition

- **1** If ω is a strong cut, then every ω -coded cut is separable.
- 2 If ω is not strong, then every ω -coded cut is not separable.

Non-local operators

Instead of simply looking at *F*-iterates of a single θ , what about all *F*-iterates? (Instead of long idempotent disjunctions of (0 = 1), what about all idempotent disjunctions?)

Fix $\Phi(p,q)$ a finite propositional template such that:

- q appears in $\Phi(p,q)$,
- $p \land q \vdash \Phi(p,q)$,
- $\neg p \land \neg q \vdash \neg \Phi(p,q)$, and,
- Φ has syntactic depth 1.

Define $F(x, \phi)$ inductively:

• $F(0, \phi) = \phi$.

•
$$F(x+1,\phi) = \Phi(\phi, F(x,\phi)).$$

We call F an idempotent sentential operator, and say Φ is a template for F.

Separable Cuts

Non-local Pathologies ○●○○○○○

Accessibility / Additivity

Proposition

Suppose F is an idempotent sentential operator and $\Phi(p,q)$ is a template for F. If p does not appear in Φ , then for any sentence ϕ and any $x, y \in M$, $F(x, F(y, \phi)) = F(x + y, \phi)$.

That is: $(\forall y)^{c_1}[(\forall y)^{c_2}\phi] = (\forall y)^{c_1+c_2}\phi.$

We say F is accessible if p occurs in Φ (then you can "access" ϕ from $F(x, \phi)$); F is additive otherwise.

Satisfaction	Idempotent Disjunctions	Local Pathologies	Separable Cuts	Non-local Pathologies ○○●○○○○

Additivity

Proposition

Let $I \subseteq_{end} M$ be a cut. Let F be an additive idempotent sentential operator and S a full satisfaction class such that

$$I = \{x : \forall c < x \forall \phi(S(\phi, \emptyset) \leftrightarrow S(F(c, \phi), \emptyset))\}.$$

Then I is closed under addition.

Proof: Suppose $x \in I$. Let c < 2x. Then $\lfloor \frac{c}{2} \rfloor < x$. For $\phi \in$ Sent, we have

$$S(\phi, \emptyset) \leftrightarrow S(F(\lceil \frac{c}{2} \rceil, \phi), \emptyset) \leftrightarrow S(F(c, \phi), \emptyset).$$

Let F be an idempotent sentential operator. Then we say I is *F*-closed if either F is accessible (and I is closed under successors) or F is additive and I is closed under addition.

Satisfaction	Idempotent Disjunctions	Local Pathologies	Separable Cuts	Non-local Pathologies ○○○●○○○
Result				

Theorem

Let F be an idempotent sentential operator, $I \subseteq_{end} M$ be F-closed and separable. Then there is a full satisfaction class S such that $I = \{x : \forall y < x \forall \phi(S(\phi, \emptyset) \leftrightarrow S(F(y, \phi), \emptyset))\}.$

We also say $I \subseteq_{end} M$ has no least *F*-gap above it if for each x > I, there is y > I such that for each $n \in \omega$, $y \odot n < x$, where \odot is + if *F* is accessible and \times if *F* is additive.

Theorem

Let F be an idempotent sentential operator, $I \subseteq_{end} M$ F-closed and has no least F-gap above it. Then there is a full satisfaction class S such that $I = \{x : \forall y < x \forall \phi(S(\phi, \emptyset) \leftrightarrow S(F(y, \phi), \emptyset))\}.$

Satisfaction	

Separable Cuts

Non-local Pathologies

Converse

Proposition

Let F be an accessible idempotent sentential operator, S a full satisfaction class and

 $I = \{x : \forall y < x \forall \phi(S(\phi, \emptyset) \leftrightarrow S(F(y, \phi), \emptyset))\}.$

Then either there is no least \mathbb{Z} -gap above I or I is separable.

Proof: Suppose $\{c - n : n \in \omega\}$ is the least \mathbb{Z} -gap above *I*. Then there is ϕ such that $\neg S(F(c, \phi), \emptyset) \leftrightarrow S(\phi, \emptyset)$. In fact, for each x < c, one has $S(F(x, \phi), \emptyset) \leftrightarrow S(\phi, \emptyset)$ if and only if $x \in I$. Let $D = \{F(x, \phi) \leftrightarrow \phi : x < c\}$; then by our "local" results, $A = \{F(x, \phi) \leftrightarrow \phi : x \in I\}$ is separable.

Separable Cuts

Non-local Pathologies

Converse, II

Proposition

Let F be an additive idempotent sentential operator, S a full satisfaction class and

$$I = \{x : \forall y < x \forall \phi(S(\phi, \emptyset) \leftrightarrow S(F(y, \phi), \emptyset))\}.$$

Then either there is no least +-gap above I or I is separable.

(Proof is more involved.)

Separable Cuts

Non-local Pathologies

Arithmetic Saturation, again

Theorem

Let \mathcal{M} be countable, recursively saturated. Then the following are equivalent:

- For every idempotent sentential operator F and every F-closed cut I, there is a full satisfation class S such that

 $I = \{x : \forall y < x \forall \phi(S(\phi, \emptyset) \leftrightarrow S(F(y, \phi), \emptyset))\}.$

(1) \implies (2): if ω is strong, then every cut which is ω -coded is separable. If it has a least *F*-gap, it is ω -coded!

(2) \implies (1): if ω is not strong, then cuts which have least *F*-gaps are not separable. Previous slides: these cuts cannot be these "*F*-correct" cuts.

Thank you!

The results mentioned today will appear in Abdul-Quader and Łełyk, "Pathologies in satisfaction classes." (Work in progress)

Some other references:

- Cieśliński, Łełyk and Wcisło, The two halves of disjunctive correctness. Journal of Mathematical Logic (in press).
- Enayat and Pakhomov, Truth, disjunction, and induction. Archive for Mathematical Logic 58, 753-766 (2019).
- Enayat and Visser, New constructions of satisfaction classes. In: Unifying the philosophy of truth, vol 36, 321-335 (2015).
- Kossak, Models with the ω-property. Journal of Symbolic Logic 54, 177-189 (1989).