Lesson 1: Generics

Professor Abdul-Quader

Data Structures

Professor Abdul-Quader 1/12



Generics

We will be exploring abstract data types: lists, stacks, queues, etc.

Problem: Do we need to re-write our stack code to support
ListOfIntegers vs ListOfDoubles vs List0fStrings?

public class MyList<T> {
public void add(T newElement) {
// add newElement to the list
}

public T get(int index) {
// get the element at that position of the list
}

T is the type parameter or generic. MyList is a “generic type”
(or “parameterized type").

Professor Abdul-Quader 2/12



Autoboxing / unboxing, diamonds

Technically, the type parameter needs to be instantiated by an
actual class:

// MyList<int> 1 = new MyList<>(); this does not compile!
MyList<Integer> 1 = new MyList<>();

@ Use the wrapper classes to instantiate: Integer for int, Double
for double, etc.

@ autoboxing: When we add to the collection, Java
automatically changes ints to Integers, so we don't need to
worry about it: 1.add(3); instead of
1.add(new Integer(3));.

e unboxing: When we get from the collection, we can store it
in a regular int: int num = 1.get(3);

Professor Abdul-Quader 3/12



Exercise

Implement a simple generic class which supports two operations:
read and write. A skeleton is posted on Moodle under the name
“ReadWriteCell.java”. Fill in the code for that

Implement a main method which instantiates this class and test
out that it works. What happens if you do the following:

ReadWriteCell<String> r = new ReadWriteCell<>();
r.write(32);

Professor Abdul-Quader 4/12



Wildcards

Generics are not covariant: Suppose Apple extends from class
Fruit. We might hope that Collection<Apple> can be used
whenever Collection<Fruit> is asked for (in a parameter). This is
not the case!

// cannot call printFruit() and pass a Collection<Apple>!
public void printFruit(Collection<Fruit> c) {
for (Fruit f : c) {
System.out.println(f);
}
}

// use wildcards instead!
public void printFruit(Collection<? extends Fruit> c) {
// .. same code as before

Can also use <? super Fruit> to mean a superclass instead of a
subclass.

Professor Abdul-Quader 5/12



Generic Static Methods

Quick exercise: try to write a static method which searches a
generic array for a value. It should return true if the value is in the
array, false otherwise. Where do you declare the type parameter?

Professor Abdul-Quader 6/12



Generic Static Methods

Quick exercise: try to write a static method which searches a
generic array for a value. It should return true if the value is in the
array, false otherwise. Where do you declare the type parameter?

public static <T> boolean contains(T[] array, T value) {

}

Professor Abdul-Quader 6/12



Type Bounds

Quick exercise 2: try to update the SelectionExercise to work for
a generic type. How would we compare generic objects, without
knowing that they are integers? Use the Comparable<T> type!

Professor Abdul-Quader 7/12



Type Bounds

Quick exercise 2: try to update the SelectionExercise to work for
a generic type. How would we compare generic objects, without
knowing that they are integers? Use the Comparable<T> type!

public class SelectionExercise<T extends Comparable<T>> {
/...

// only change is compareTo instead of <

What if Fruit implements Comparable<Fruit>? Wil
SelectionExercise<Apple> work? (That is, does “Apple” extend
Comparable<Apple>?)

Solution:
SelectionExercise<T extends Comparable<? super T>>.

Professor Abdul-Quader 7/12



Exercise

Implement a generic, static method which finds the minimum
element in an array of (generic) objects. Assume these objects
implement the Comparable interface.

Professor Abdul-Quader 8/12



Syntactic Sugar

String[] list = new String[5];
Object[] o = list;
o[0] = new Integer(30);

Does this compile? Does it run?

Generics were created to fix this: now run-time errors become
compile-time errors. But the fix, in Java, was a half-measure:
generics are only “syntactic sugar”. When you compile a class
MyList<T>, it creates just a single raw type, rather than one for
each possible type parameter T. That is: it just becomes MyList
(the parameter T gets replaced by its “bound”, Object in this
case).

Professor Abdul-Quader 9/12



Type Erasure

Type Erasure: after the class is compiled to bytecode, the
“JVM" -version of the class is the raw type (with no generic). This
means:

@ Primitive types cannot be used as type parameters, because
int does not inherit from Object (or from any other class).

@ Casts can mess you up:

ReadWriteCell<String> rws = new ReadWriteCell<>();

rws.write("Hello");

ReadWriteCell<Integer> rwi = (ReadWriteCell<Integer>)
rws; // this works!

int x = rwi.read(); // this is bad

e Cannot instantiate a generic type (what constructor would
new call?)

Professor Abdul-Quader 10/12



More Restrictions

@ Cannot create an array of generic objects.
(T[] array = new T[5];)

@ Cannot createa an array of parameterized types:

ReadWriteCell<String>[] arrl = new ReadWriteCell<>[5];
ReadWriteCell<Double> c = new ReadWriteCell<>();
c.write(0.01);

Object[] badGuy = arri;

badGuy [0] = c;

String s = arr1[0].read();

Professor Abdul-Quader 11/12



Abstract Data Types

We will start this next class.

@ Abstract Data Type: an abstraction of a data type. Set of
obejects with some defined set of operations. Does not talk
about the specific implementation of the type!

o Often we use interfaces to specify the operations.

@ First examples: Lists, Stacks, and Queues

public interface List<T> {
void insert(T object, int position);
void remove(int position);
void printList();
T get(int 1i);

// maybe others

Professor Abdul-Quader 12 /12



