
Lesson 1: Generics

Professor Abdul-Quader

Data Structures

Professor Abdul-Quader Lesson 1: Generics 1 / 12



Generics

We will be exploring abstract data types: lists, stacks, queues, etc.

Problem: Do we need to re-write our stack code to support
ListOfIntegers vs ListOfDoubles vs ListOfStrings?

public class MyList<T> {

public void add(T newElement) {

// add newElement to the list

}

public T get(int index) {

// get the element at that position of the list

}

}

T is the type parameter or generic. MyList is a “generic type”
(or “parameterized type”).

Professor Abdul-Quader Lesson 1: Generics 2 / 12



Autoboxing / unboxing, diamonds

Technically, the type parameter needs to be instantiated by an
actual class:

// MyList<int> l = new MyList<>(); this does not compile!

MyList<Integer> l = new MyList<>();

Use the wrapper classes to instantiate: Integer for int, Double
for double, etc.

autoboxing: When we add to the collection, Java
automatically changes ints to Integers, so we don’t need to
worry about it: l.add(3); instead of
l.add(new Integer(3));.

unboxing: When we get from the collection, we can store it
in a regular int: int num = l.get(3);

Professor Abdul-Quader Lesson 1: Generics 3 / 12



Exercise

Implement a simple generic class which supports two operations:
read and write. A skeleton is posted on Moodle under the name
“ReadWriteCell.java”. Fill in the code for that

Implement a main method which instantiates this class and test
out that it works. What happens if you do the following:

ReadWriteCell<String> r = new ReadWriteCell<>();

r.write(32);

Professor Abdul-Quader Lesson 1: Generics 4 / 12



Wildcards

Generics are not covariant: Suppose Apple extends from class
Fruit. We might hope that Collection<Apple> can be used
whenever Collection<Fruit> is asked for (in a parameter). This is
not the case!

// cannot call printFruit() and pass a Collection<Apple>!

public void printFruit(Collection<Fruit> c) {

for (Fruit f : c) {

System.out.println(f);

}

}

// use wildcards instead!

public void printFruit(Collection<? extends Fruit> c) {

// .. same code as before

Can also use <? super Fruit> to mean a superclass instead of a
subclass.

Professor Abdul-Quader Lesson 1: Generics 5 / 12



Generic Static Methods

Quick exercise: try to write a static method which searches a
generic array for a value. It should return true if the value is in the
array, false otherwise. Where do you declare the type parameter?

public static <T> boolean contains(T[] array, T value) {

...

}

Professor Abdul-Quader Lesson 1: Generics 6 / 12



Generic Static Methods

Quick exercise: try to write a static method which searches a
generic array for a value. It should return true if the value is in the
array, false otherwise. Where do you declare the type parameter?

public static <T> boolean contains(T[] array, T value) {

...

}

Professor Abdul-Quader Lesson 1: Generics 6 / 12



Type Bounds

Quick exercise 2: try to update the SelectionExercise to work for
a generic type. How would we compare generic objects, without
knowing that they are integers? Use the Comparable<T> type!

public class SelectionExercise<T extends Comparable<T>> {

// ...

// only change is compareTo instead of <

What if Fruit implements Comparable<Fruit>? Will
SelectionExercise<Apple> work? (That is, does “Apple” extend
Comparable<Apple>?)

Solution:
SelectionExercise<T extends Comparable<? super T>>.

Professor Abdul-Quader Lesson 1: Generics 7 / 12



Type Bounds

Quick exercise 2: try to update the SelectionExercise to work for
a generic type. How would we compare generic objects, without
knowing that they are integers? Use the Comparable<T> type!

public class SelectionExercise<T extends Comparable<T>> {

// ...

// only change is compareTo instead of <

What if Fruit implements Comparable<Fruit>? Will
SelectionExercise<Apple> work? (That is, does “Apple” extend
Comparable<Apple>?)

Solution:
SelectionExercise<T extends Comparable<? super T>>.

Professor Abdul-Quader Lesson 1: Generics 7 / 12



Exercise

Implement a generic, static method which finds the minimum
element in an array of (generic) objects. Assume these objects
implement the Comparable interface.

Professor Abdul-Quader Lesson 1: Generics 8 / 12



Syntactic Sugar

String[] list = new String[5];

Object[] o = list;

o[0] = new Integer(30);

Does this compile? Does it run?

Generics were created to fix this: now run-time errors become
compile-time errors. But the fix, in Java, was a half-measure:
generics are only “syntactic sugar”. When you compile a class
MyList<T>, it creates just a single raw type, rather than one for
each possible type parameter T. That is: it just becomes MyList
(the parameter T gets replaced by its “bound”, Object in this
case).

Professor Abdul-Quader Lesson 1: Generics 9 / 12



Type Erasure

Type Erasure: after the class is compiled to bytecode, the
“JVM”-version of the class is the raw type (with no generic). This
means:

Primitive types cannot be used as type parameters, because
int does not inherit from Object (or from any other class).

Casts can mess you up:

ReadWriteCell<String> rws = new ReadWriteCell<>();

rws.write("Hello");

ReadWriteCell<Integer> rwi = (ReadWriteCell<Integer>)

rws; // this works!

int x = rwi.read(); // this is bad

Cannot instantiate a generic type (what constructor would
new call?)

Professor Abdul-Quader Lesson 1: Generics 10 / 12



More Restrictions

Cannot create an array of generic objects.
(T[] array = new T[5];)

Cannot createa an array of parameterized types:

ReadWriteCell<String>[] arr1 = new ReadWriteCell<>[5];

ReadWriteCell<Double> c = new ReadWriteCell<>();

c.write(0.01);

Object[] badGuy = arr1;

badGuy[0] = c;

String s = arr1[0].read();

Professor Abdul-Quader Lesson 1: Generics 11 / 12



Abstract Data Types

We will start this next class.

Abstract Data Type: an abstraction of a data type. Set of
obejects with some defined set of operations. Does not talk
about the specific implementation of the type!

Often we use interfaces to specify the operations.

First examples: Lists, Stacks, and Queues

public interface List<T> {

void insert(T object, int position);

void remove(int position);

void printList();

T get(int i);

// maybe others

}

Professor Abdul-Quader Lesson 1: Generics 12 / 12


