Calculus I Lesson 21

Athar Abdul-Quader

20 November 2025

Presentations

\(y = x^2\)

Definite Integrals

Recall: a function \(f(x)\) is integrable over \([a, b]\) if the following limit exist:

\[ \lim_{n \rightarrow \infty} \sum_{i=0}^n f(x_i^*) \Delta x\]

If this limit exists, then \(\int\limits_a^b f(x) dx\) is defined to be that limit.

Definite Integral

In other words:

  • The definite integral of \(f(x)\) from \(x = a\) to \(x = b\) is the area under the curve \(y = f(x)\) from \(x = a\) to \(x = b\).
  • This is computed using limits of Riemann sums.
  • Today: find a better method for computing these areas.

Integrally Defined Functions

  • Variable used in integration doesn’t really matter:

\[ \int_a^b f(x) dx = \int_a^b f(t) dt \]

If \(f(x)\) is integrable on \([a, b]\), we can define:

\[ F(x) = \int_a^x f(t) dt \]

Idea

  • Pick \(x\) in \([a, b\)].
  • Find area from \(a\) to \(x\) under the curve.
  • That’s the value of \(F(x)\).
  • Q: What is \(F(a)\)? Area of a straight, vertical line?

Example

Using geometry: let \(F(x) = \int\limits_0^x 2t dt\). Find an expression for \(F(x)\).

Solution

  • Triangle: \(A = \frac{1}{2} bh\)
  • Base = \(x\)
  • Height = \(2x\)
  • \(A = \frac{1}{2} x \cdot (2x) = x^2\)

Exercise

  • \(\int\limits_2^x 2t dt\)
  • \(\int\limits_3^x 2t dt\)

Hint

Area of a trapezoid: \(\frac{1}{2} a(b_1 + b_2)\)

Solution

\[ \begin{align} \int_2^x 2t dt &= \frac{1}{2}(x-2)(4+2x) \\ &= (x-2)(2+x) \\ &= x^2 - 4 \end{align} \]

Solution

\[ \begin{align} \int\limits_3^x 2t dt &= \frac{1}{2}(x-3)(6+2x) \\ &= (x-2)(3+x) \\ &= x^2 - 9 \end{align} \]

General pattern? \(\int\limits_a^x 2t dt = x^2 - a^2\)

Notice: \((x^2 - a^2)^\prime = 2x\)!

Fundamental Theorem of Calculus

Theorem: If \(f(x)\) is continuous on \([a, b]\) and

\[ F(x) = \int_a^x f(t) dt\]

then \(F^\prime(x) = f(x)\)

“Derivative of an integral cancels out.”

Idea

\(F(x+h) - F(x)\)?

Idea

\[F(x+h) - F(x) = \int_x^{x+h} f(t) dt\]

  • As \(h \rightarrow 0\)?
  • \(F(x+h) - F(x) \approx f(x)h\) (Riemann)
  • So \(\dfrac{F(x+h)-F(x)}{h}\)?

Upshot?

  • Every continuous function on \([a, b]\) has an antiderivative!
  • Ex: \(\frac{d}{dx} \int\limits_0^x \frac{1}{t+1} dt = \frac{1}{x+1}\)

Example:

\(\frac{d}{dx} \int\limits_0^{x^2} \sin(t) dt\)? Chain rule:

  • \(F(x) = \int\limits_0^x \sin(t) dt\)
  • \(g(x) = x^2\)
  • \((F \circ g)^\prime(x)\)?

\(\frac{d}{dx} \int\limits_0^{x^2} \sin(t) dt\):

  • \(F^\prime(g(x)) g^\prime(x)\)
  • \(F^\prime(x) = \sin(x)\)
  • \(g^\prime(x) = 2x\)
  • So: \(2x \sin(x^2)\)

Exercises

Find the derivatives of the following functions:

  1. \(F(x) = \int\limits_{-2}^{2x+1} t^2 dt\)
  2. \(G(x) = \int\limits_0^{x^3} t dt\)
  3. \(H(x) = \int\limits_{x^2}^{1} t dt\)

Solution 1

\[ \begin{align} F_1(x) &= \int_{-2}^{x} t^2 dt \\ g(x) &= 2x + 1 \\ F(x) &= (F_1 \circ g)(x) \\ F^\prime(x) &= F_1^\prime(g(x)) g^\prime(x) \\ &= (2x+1)^2 \cdot 2 \end{align} \]

Solution 2

\[ \begin{align} G_1(x) &= \int_{0}^{x} t dt \\ g(x) &= x^3 \\ G(x) &= (G_1 \circ g)(x) \\ G^\prime(x) &= G_1^\prime(g(x)) g^\prime(x) \\ &= x^3 \cdot (3x^2) \end{align} \]

Solution 3

  • Trickier.
  • \(F(x) = \int\limits_1^x t dt\)
  • \(-F(x) = \int\limits_x^1 t dt\)
  • \(g(x) = x^2\)
  • \((-F \circ g)^\prime(x)\)?
  • \(= (-x^2)(2x) = -2x^3\)

FTC: Part 2

  • Derivatives of integrals?
    • Cancel out.
    • Chain rule + FTC
  • Other way around? Integrals of derivatives?
    • FTC, Part 2!

FTC Part 2

Theorem: If \(F(x)\) is an antiderivative of \(f(x)\), defined on \([a, b]\), then

\[\int_a^b f(x) dx = F(b) - F(a)\]

Example

\[\int_0^1 x^2 dx\]

  • Antiderivative?
  • \(F(x) = \frac{x^3}{3}\)
  • \(F(1) - F(0) = \frac{1}{3} - 0 = \frac{1}{3}\)

Example

\[\int_{-\pi}^{\pi} \sin(x) dx\]

  • Antiderivative?
  • \(F(x) = -\cos(x)\)
  • \(F(\pi) = -\cos(\pi) = 1\)
  • \(F(-\pi) = -\cos(-\pi) = 1\)
  • \(F(1) - F(0) = 0\)

Exercises

Evaluate the following definite integrals (using the fundamental theorem of calculus):

  1. \(\int\limits_0^{\pi} \cos(x) dx\)
  2. \(\int\limits_1^{e} \frac{1}{x} dx\)
  3. \(\int\limits_0^{2\pi} \sin(x) dx\)

Reminders

  1. DeltaMath due tonight.
  2. Rough draft due Monday.
  3. Guest Lecture on Monday (12:30 PM): Careers in Finance Tech
  4. Exam 3: December 1.