Athar Abdul-Quader
20 November 2025
Recall: a function \(f(x)\) is integrable over \([a, b]\) if the following limit exist:
\[ \lim_{n \rightarrow \infty} \sum_{i=0}^n f(x_i^*) \Delta x\]
If this limit exists, then \(\int\limits_a^b f(x) dx\) is defined to be that limit.
In other words:
\[ \int_a^b f(x) dx = \int_a^b f(t) dt \]
If \(f(x)\) is integrable on \([a, b]\), we can define:
\[ F(x) = \int_a^x f(t) dt \]
Using geometry: let \(F(x) = \int\limits_0^x 2t dt\). Find an expression for \(F(x)\).
Area of a trapezoid: \(\frac{1}{2} a(b_1 + b_2)\)
\[ \begin{align} \int_2^x 2t dt &= \frac{1}{2}(x-2)(4+2x) \\ &= (x-2)(2+x) \\ &= x^2 - 4 \end{align} \]
\[ \begin{align} \int\limits_3^x 2t dt &= \frac{1}{2}(x-3)(6+2x) \\ &= (x-2)(3+x) \\ &= x^2 - 9 \end{align} \]
General pattern? \(\int\limits_a^x 2t dt = x^2 - a^2\)
Notice: \((x^2 - a^2)^\prime = 2x\)!
Theorem: If \(f(x)\) is continuous on \([a, b]\) and
\[ F(x) = \int_a^x f(t) dt\]
then \(F^\prime(x) = f(x)\)
“Derivative of an integral cancels out.”
\(F(x+h) - F(x)\)?
\[F(x+h) - F(x) = \int_x^{x+h} f(t) dt\]
\(\frac{d}{dx} \int\limits_0^{x^2} \sin(t) dt\)? Chain rule:
\(\frac{d}{dx} \int\limits_0^{x^2} \sin(t) dt\):
Find the derivatives of the following functions:
\[ \begin{align} F_1(x) &= \int_{-2}^{x} t^2 dt \\ g(x) &= 2x + 1 \\ F(x) &= (F_1 \circ g)(x) \\ F^\prime(x) &= F_1^\prime(g(x)) g^\prime(x) \\ &= (2x+1)^2 \cdot 2 \end{align} \]
\[ \begin{align} G_1(x) &= \int_{0}^{x} t dt \\ g(x) &= x^3 \\ G(x) &= (G_1 \circ g)(x) \\ G^\prime(x) &= G_1^\prime(g(x)) g^\prime(x) \\ &= x^3 \cdot (3x^2) \end{align} \]
Theorem: If \(F(x)\) is an antiderivative of \(f(x)\), defined on \([a, b]\), then
\[\int_a^b f(x) dx = F(b) - F(a)\]
\[\int_0^1 x^2 dx\]
\[\int_{-\pi}^{\pi} \sin(x) dx\]
Evaluate the following definite integrals (using the fundamental theorem of calculus):